Dynamic Response of a Composite Propeller Blade Subjected to Shock and Bubble Pressure Loading
نویسندگان
چکیده
The interaction between an underwater explosion and a composite propeller involves several physical phenomena that an accurate numerical simulation needs to capture. These include proper description of the initial explosion shock wave, of its propagation in the water, and of its interaction with the propeller blades and any other neighboring boundaries. In this work, a numerical procedure which links a compressible flow solver with an incompressible flow solver is applied to capture both shock and bubble phases efficiently and accurately. Both flow codes solve the fluid dynamics while intimately coupling the solution with a finite element structure code thus enabling simulation of full fluid-structure interaction. This numerical approach is applied to the simulation of the interaction between an underwater explosion and a multi-layered propeller blade made of a set of composite materials. Fiber orientation in the various layers is studied to understand which combinations of materials and fiber orientations give the strongest resistance in terms of both bending and twisting of the blade.
منابع مشابه
The Dynamic and Vibration Response of Composite Cylindrical Shell Under Thermal Shock and Mild Heat Field
In this article, the vibration and dynamic response of an orthotropic composite cylindrical shell under thermal shock loading and thermal field have been investigated. The problem is that the shell is initially located at a first temperature, and some tension caused by a mild heat field is created, then the surface temperature of the cylinder suddenly increases. The partial derivative equations...
متن کاملFluid-structure interaction studies on marine propeller
Composite propellers offer high damping characteristics and corrosion resistance when compared with metal propellers. But the design of a hybrid composite propeller with the same strength of metal propeller is the critical task. For this purpose, the present paper focusses on fluid-structure interaction analysis of hybrid composite propeller with Carbon/Epoxy, R-Glass/Epoxy and S2-Glass/Epoxy t...
متن کاملNumerical Computation of Shock Waves in a Spherical Cloud of Cavitation Bubbles
The nonlinear dynamics of a spherical cloud of cavitation bubbles have been simulated numerically in order to learn more about the physical phenomena occurring in cloud cavitation. A finite cloud of nuclei is subject to a decrease in the ambient pressure which causes the cloud to cavitate. A subsequent pressure recovery then causes the cloud to collapse. This is typical of the transient behavio...
متن کاملNumerical and Experimental Investigations for Design of a High Performance Micro-hydro-kinetic Turbine
Design and manufacturing of a high performance micro-hydro-kinetic turbine is discussed in the present paper. The main goal is manufacturing an equipped experimental model of hydro-kinetic turbine with highest energy absorption from water current. A multi-shape ducted turbine comprised of a multi-part diffuser was manufactured that can be converted to many experimental models for studying vario...
متن کاملDynamic Stability of Moderately Thick Composite Laminated Skew Plates using Finite Strip Method
The dynamic instability regions of composite laminated skew flat plates subjected to uniform in-plane axial end-loading are investigated. The in-plane loading is assumed as a combination of a time-invariant component and a harmonic time-varying component uniformly distributed along two opposite panel ends’ width. In case of some loading frequency-amplitude pair-conditions, the model is subjecte...
متن کامل